If you wish to contribute or participate in the discussions about articles you are invited to join SKYbrary as a registered user

Cross-checking Process

From SKYbrary Wiki
Article Information
Category: Human Behaviour Human Behaviour
Content source: SKYbrary About SKYbrary
Content control: SKYbrary About SKYbrary

Description

The human mind is fallible and error can occur for many reasons, for example, from a misheard message, from memory slip, or from incorrect appreciation of the situation.

Error is particularly likely in certain circumstances, especially when there is pressure to complete a task quickly (e.g. to expedite departure or during an emergency or abnormal situation), but may also occur in normal everyday situations.

Error in aviation can have severe consequences and the cross-checking process is used wherever possible to eliminate error.

Cross-checking and the Pilot

The cross-checking process is a vital element of a pilot's duties, particularly in a multi crew situation where the roles of the two pilots are defined as Pilot Flying and Pilot Not Flying. The Pilot Not Flying (PNF) - alternatively referred to as the Pilot Monitoring - has responsibility for monitoring the actions and awareness of aircraft control of the Pilot Flying (PF).

Whilst the monitoring role of a PNF must not be limited to specific parts of flight crew duties, Company SOPs should include a minimum list of defined actions which are to be cross-checked, for example:

  • A Load and Trim Sheet prepared (exceptionally) by a member of a flight crew must be subject to meaningful cross checking before acceptance.
  • ATC clearances will normally be monitored by both pilots and consequent action including readback taken by one pilot will be confirmed/monitored by the other.

Cross-checking and the Controller

Cross-checking is equally important for the ATCO, and comprises two elements:

Cross-checking the actions of pilots

Where possible, the controller should monitor the actions of the pilot, either by reference to the radar screen or by visual observation, to ensure that instructions are followed correctly.

The extent to which a controller can cross-check the actions of pilots depends on his/her workload; however, every effort should be made to do so in situations where error is likely to occur. For example, when the pilots are dealing with an aircraft unserviceability, or when the pilot appears to be inexperienced, confused, or have limited language ability. A particular example of a situation where monitoring by radar or directly may be conducive to safety is the execution of issued VFR clearances in airspace such as Class 'D'; in this situation, loss of separation against IFR traffic can occur due to poor situational awareness of the IFR aircraft flight crew, who might wrongly assume that they benefit from ATC-controlled separation from VFR traffic as well as from other IFR traffic.

Controllers should pay particular attention to aircraft manoeuvring on the ground near runway hotspots and to potential conflicts which can arise in the air when intersecting runways are in use simultaneously and this involves intersecting approach, missed approach or take off flight paths.

Cross-checking the actions of colleagues

Cross-checking is a normal part of the duties of an ATC Assistant if these exist; otherwise, controllers rarely have the free capacity to monitor the duties of other controllers and such action could not be expected to form part of their duties. Nevertheless, the following areas are important:

  • Controllers taking over responsibility for a sector have much information to absorb and the potential for error or oversight is high. The controller going off duty should monitor the actions of their replacement for a few minutes after hand-over to ensure that neither has overlooked any significant aspect of the prevailing traffic situation and to be available to deal with any questions that might arise;
  • Inexperienced controllers or controllers who are new to their positions may not become fully proficient for some time. Appropriate mentoring procedures should be in place until their unaided performance is assessed as satisfactory.
  • When a controller is dealing with an abnormal situation, e.g. an aircraft emergency or very high density traffic, the enlistment of any off-duty controllers to assist can be an important safety net.

Accidents & Incidents

Events in the SKYbrary database which include Ineffective Monitoring as a contributory factor:

  • A124, Zaragoza Spain, 2010 (On 20 April 2010, the left wing of an Antonov Design Bureau An124-100 which was taxiing in to park after a night landing at Zaragoza under marshalling guidance was in collision with two successive lighting towers on the apron. Both towers and the left wingtip of the aircraft were damaged. The subsequent investigation attributed the collision to allocation of an unsuitable stand and lack of appropriate guidance markings.)
  • A306, East Midlands UK, 2011 (On 10 January 2011, an Air Atlanta Icelandic Airbus A300-600 on a scheduled cargo flight made a bounced touchdown at East Midlands and then attempted a go around involving retraction of the thrust reversers after selection out and before they had fully deployed. This prevented one engine from spooling up and, after a tail strike during rotation, the single engine go around was conducted with considerable difficulty at a climb rate only acceptable because of a lack of terrain challenges along the climb out track.)
  • A306, vicinity Birmingham AL USA, 2013 (On 14 August 2013, a UPS Airbus A300-600 crashed short of the runway at Birmingham Alabama on a night IMC non-precision approach after the crew failed to go around at 1000ft aal when unstabilised and then continued descent below MDA until terrain impact. The Investigation attributed the accident to the individually poor performance of both pilots, to performance deficiencies previously-exhibited in recurrent training by the Captain and to the First Officer's failure to call in fatigued and unfit to fly after mis-managing her off duty time. A Video was produced by NTSB to further highlight human factors aspects.)
  • A306, vicinity London Gatwick, 2011 (On 12 January 2011, an Airbus A300-600 being operated by Monarch Airlines on a passenger flight from London Gatwick to Chania, Greece experienced activations of the stall protection system after an unintended configuration change shortly after take off but following recovery, the flight continued as intended without further event. There were no abrupt manoeuvres and no injuries to the 347 occupants.)
  • A306, vicinity Nagoya Japan, 1994 (On 26 April 1994, the crew of an Airbus A300-600 lost control of the aircraft on final approach to Nagoya and the aircraft crashed within the airport perimeter. The Investigation found that an inadvertent mode selection error had triggered control difficulties which had been ultimately founded on an apparent lack understanding by both pilots of the full nature of the interaction between the systems controlling thrust and pitch on the aircraft type which were not typical of most other contemporary types. It was also concluded that the Captain's delay in taking control from the First Officer had exacerbated the situation.)
  • A310 / B736, en-route, Southern Norway, 2001 (On 21 February 2001, a level bust 10 nm north of Oslo Airport by a climbing PIA A310 led to loss of separation with an SAS B736 in which response to a TCAS RA by the A310 not being in accordance with its likely activation (descend). The B736 received and correctly actioned a Climb RA.)
  • more


Further Reading

UK CAA

Flight Safety Foundation ALAR Briefing Notes: