Reduced Thrust Takeoff
Reduced Thrust Takeoff
Definition
A reduced thrust takeoff is a takeoff that is accomplished utilising less thrust than the engines are capable of producing under the existing conditions of temperature and pressure altitude.
Rationale
AOM limitations, the runway specific criteria of length, altitude and obstacles factored against the actual aircraft weight and existing environmental conditions allow the calculation of the actual amount of thrust necessary to meet Regulatory requirements for takeoff. In a significant percentage of cases, the required thrust is less than that which the engines are capable of producing.
Advantages
The primary advantage to a reduced thrust takeoff is cost savings through increased engine life and reduced overhaul costs. Secondary advantages include fuel savings and that, under certain circumstances, it may be possible to increase the maximum takeoff weight for a specific runway by using a reduced thrust profile.
Jet Engine Limitations
The principal limitations of a jet engine are the maximum internal presure that the casing can withstand and the maximum allowable operating temperature. At low altitudes and cooler outside air temperatures (OAT), engine pressure is the limiting factor as the engine is capable of producing more pressure and, consequently, more thrust than the engine can contain. The FADEC will be programmed to flat rate the engine at a thrust corresponding to a safe internal engine pressure. This thrust value is the rated or maximum thrust that the engine will produce. Engines are flat rated by the manufacturer by referencing a specific environmental limit or flat rated temperature that is expressed as an ISA+xx° value. At an OAT of ISA+xx° or below, the engine is capable of producing its rated thrust. The FADEC compensates for varying OAT and presure altitude by adjusting fuel flow and limiting the rotational speed of the engine. As the OAT increases above the flat rated temperature, the engine is no longer capable of exceeding its limiting pressure, can no longer produce its rated thrust and therefore becomes temperature limited. At this point, the FADEC limits the internal temperature of the engine so the maximum temperature limit is not exceeded. As the OAT increases from flat rated temperature to the maximum allowed for engine operation, there is a linear reduction in the amount of thrust that the engine produces.
If the amount of thrust that the engine can generate under given environmental conditions exceeds that required for takeoff, the FADEC can be "instructed" to reduce the amount of thrust to be produced by the engine.
Methodology
There are two methods of achieving an acurately controlled reduction in engine thrust:
- Derate, and
- Assumed temperature (sometimes referred to as Flexible temperature or FLEX).
Dependant upon the engine manufacturer, one or both of these thrust reduction methods may be available to the operator. When both possibilities are available, the engine design may allow that both derate and assumed temperature can be used simultaneously or, conversely, the two methods of reducing engine thrust may be mutually exclusive.
Derate
A derate selection electronically reduces the rated thrust of the engine to either one or more prespecified values or by a selectable percentage of the normal flat rated thrust. As this new thrust limit cannot be exceeded during the takeoff phase, critical speeds such as Vmcg and Vmca change from those associated with full rated thrust. Consequently the AOM must include performance data for all permissible derate selections.
Assumed Temperature
As stated above, at outside air temperatures above the flat rated temperature, there is a specific thrust value (variable by pressure altitude) for each temperature. If the thrust requirement for the takeoff is known, the associated temperature at which this thrust would be produced can be extracted from the applicable charts. This "assumed" temperature is then entered into the FMS. Note that regulations limit the amount by which normal takeoff thrust can be reduced to a maximum of 25%. For assumed temperature thrust reduction, the full thrust values of Vmcg and Vmca must be considered limiting as the full rated thrust for the actual OAT can be commanded by moving the thrust levers appropriately.
Operational Consequences
A reduced thrust takeoff will result in a slower acceleration on the runway, a longer takeoff roll and a reduced initial climb rate.
Threats
The principal risks associated with a reduced thrust takeoff are the potential of miscalculating either or both of the derate or assumed temperature values and the possiblity of entering incorrect values into the aircraft Flight Management System (FMS). Either of these errors could result in the engines producing insufficient thrust to safely execute the takeoff.
Defences
When derate or assumed temperature calculations are made by the pilots utilizing either manual or electronic means, each of the pilots should make the calculations independently and then compare the results. Differences must be reconciled. Likewise, all FMS entries should be crosschecked by both pilots for accuracy.
Accidents & Incidents
On 10 June 2018, a Boeing 737-800 departing Amsterdam with line training in progress and a safety pilot assisting only became airborne just before the runway end. The Investigation found that the wrong reduced thrust takeoff performance data had been used without any of the pilots noticing and without full thrust being selected as the end of the runway approached. The operator was found to have had several similar events, not all of which had been reported. The implied absence at the operator of a meaningful safety culture and its ineffective flight operations safety oversight process were also noted.
On 18 September 2018, an Airbus A320 crewed by a Training Captain and a trainee Second Officer departing Sharjah was cleared for an intersection takeoff on runway 30 but turned onto the 12 direction and commenced takeoff with less than 1000 metres of runway ahead. On eventually recognising the error the Training Captain took control, set maximum thrust and the aircraft became airborne beyond the end of the runway and completed its international flight. The Investigation attributed the event to the pilots’ absence of situational awareness and noted that after issuing takeoff clearance, the controller did not monitor the aircraft.
On 29 August 2019, an Airbus A319 crew used more runway than expected during a reduced thrust takeoff from Nice, although not enough to justify increasing thrust. It was subsequently found that an identical error made by both pilots when independently calculating takeoff performance data for the most limiting runway intersection had resulted in use of data for a less limiting intersection than the one eventually used. The Investigation concluded that the only guaranteed way to avoid such an error would be an automatic cross check, a system upgrade which was not possible on the particular aircraft involved.
On 24 November 2019, as an Airbus A321 taking off from the 2665 metre-long runway 05 at Glasgow approached the calculated V1 with the flex thrust they had set, the aircraft was not accelerating as expected and they applied TOGA thrust. This resulted in the aircraft becoming airborne with less than 400 metres of runway remaining. The Investigation confirmed what the crew had subsequently discovered for themselves - that they had both made an identical error in their independent EFB performance calculations which the subsequent standard procedures and checks had not detected. The operator is reviewing its related checking procedures.
On 16 September 2019, an Airbus A320 departing Lisbon only became airborne 110 metres before the end of runway 21 and had a high speed rejected takeoff been required, it was likely to have overrun the runway. The Investigation found that both pilots had inadvertently calculated reduced thrust takeoff performance using the full 3705 metre runway length and then failed to identify their error before FMS entry. They also did not increase the thrust to TOGA on realising that the runway end was fast approaching. This was the operator’s third almost identical event at Lisbon in less than five months.
On 15 July 2017, a Boeing 747-8F close to its maximum takeoff weight only became airborne just before the end of the 2,500 metre-long north runway at Narita after the reduced thrust applicable to the much longer south runway was used for the takeoff and the aircraft cleared the upwind runway threshold by only 16 feet. The Investigation found that the very experienced Captain and the very inexperienced First Officer had both failed to follow elements of the applicable takeoff performance change procedures after the departure runway anticipated during pre-start flight preparations prior to ATC clearance delivery had changed.
On 21 July 2017, a Boeing 737-800 taking off from Belfast was only airborne near the runway end of the runway and then only climbed at a very shallow angle until additional thrust was eventually added. The Investigation found that the thrust set had been based on an incorrectly input surface temperature of -52°C, the expected top of climb temperature, instead of the actual surface temperature. Although inadequate acceleration had been detected before V1, the crew did not intervene. It was noted that neither the installed FMC software nor the EFBs in use were conducive to detection of the data input error.
On 1 October 2013, an Airbus A320 took off from a runway intersection at Porto which provided 1900 metres TORA using take off thrust that had been calculated for the full runway length of 3480 metres TORA. It became airborne 350 metres prior to the end of the runway but the subsequent Investigation concluded that it would not have been able to safely reject the take-off or continue it, had an engine failed at high speed. The event was attributed to distraction and the inappropriate formulation of the operating airline's procedures for the pre take-off phase of flight.
On 21 Nov 2010, a Boeing 737-700 being operated by Arik Air on a non revenue positioning flight from Southend to Lagos with only the two pilots on board carried out a successful take off in daylight and normal ground visibility from runway 06 but became airborne only just before the end of the runway.
On 28 October 2008, an Airbus A330-200 could not be rotated for liftoff whist making a night takeoff from Montego Bay until the Captain had increased the reduced thrust set to TOGA, after which the aircraft became airborne prior to the end of the runway and climbed away normally. The Investigation found that the takeoff performance data used had been calculated for the flight by Company Despatch and the fact that it had been based on a takeoff weight which was 90 tonnes below the actual take off weight had not been noticed by any of the flight crew.
On 20 March 2009 an Airbus A340-500, operated by Emirates, commenced a take-off roll for a normal reduced-thrust take-off on runway 16 at Melbourne Airport. The attempt to get the aircraft airborne resulted in a tail strike and an overrun because insufficient thrust had been set based upon an incorrect flight crew data entry.
On 22 March 2007, an Emirates Boeing 777-300ER, started its take-off on runway 05 Right at Auckland International Airport bound for Sydney. The pilots misunderstood that the runway length had been reduced during a period of runway works and started their take-off with less engine thrust and flap than were required. During the take-off they saw work vehicles in the distance on the runway and, realising something was amiss, immediately applied full engine thrust and got airborne within the available runway length and cleared the work vehicles by about 28 metres.
On 14 October 2004, a B742 crashed on take off from Halifax International Airport, Canada, and was destroyed by impact forces and a post-crash fire. The crew had calculated incorrect V speeds and thrust setting using an EFB.
Related Articles
- Use of Erroneous Parameters at Take-Off
- Aircraft Performance
- Global Action Plan for the Prevention of Runway Excursions (GAPPRE)
Further Reading
Categories