If you wish to contribute or participate in the discussions about articles you are invited to join SKYbrary as a registered user

 Actions

Air Turnback

From SKYbrary Wiki

Article Information
Category: General General
Content source: SKYbrary About SKYbrary
Content control: SKYbrary About SKYbrary

Description

An air turnback is a situation where an aircraft returns to land at the departure aerodrome without having initially planned to do so.

The most common reason for air turnback is an emergency or abnormal situation during or shortly after take-off, the most common being engine failure. If the problem happens during acceleration, the crew might attempt to reject the take off depending on the speed and the nature of emergency. Sometimes a safer option is to get airborne and then make an approach and land. A probable complication in this case is that the aircraft's current weight may be greater than the certified maximum landing weight (MLW). If the crew opts for a turnback in this case, there are three options:

  • Make an overweight landing. The pilot in command has the right to deviate from prescribed procedures as required in an emergency situation in the interest of safety, i.e. they may choose to land even though the aircraft is heavier than the MLW if they consider this to be the safest course of action. The landing will be more challenging and require longer runway, thus increasing the chance of a runway excursion. Also, a special post-landing inspection will have to be carried out.
  • Burning the excess fuel, e.g. by entering a holding pattern. This is a safe option in many cases but if it is considered that by the time the weight is reduced below the MLW the aircraft will no longer be airworthy, or there is another urgent matter (e.g. a medical emergency) another course of action will be taken.
  • Dump fuel. This option is not available for most aircraft types and even if it is, the respective system may not have been installed on the particular aircraft. Additional restrictions may also apply, e.g. a minimum level to perform the operation or the need to reach a dedicated fuel dumping area.

Air turnback may happen during all phases of the flight, e.g. climb, cruise or even when the aircraft has reached the vicinity of the destination aerodrome (but is unable to land due to weather conditions). Any significant problem with the aircraft during the climb phase is likely to result in a turnback because of the closeness of the departure aerodrome. During the cruise, if an engine fails (or annother emergency situation arises, e.g. loss of cabin pressure), the flight crew will evaluate the situation and decide on the further course of action. Depending on the circumstances (severity of the situation, available fuel, company policy, weather, etc.), the choice may be to continue to the planned destination, to divert to the planned alternate, to land at the nearest suitable aerodrome or to return to the point of departure.

Accidents and Incidents

  • S92, en-route, east of St John’s Newfoundland Canada, 2009 (On 12 March 2009, a Sikorsky S-92A crew heading offshore from St. John's, Newfoundland declared an emergency and began a return after total loss of main gear box oil pressure but lost control during an attempted ditching. The Investigation found that all oil had been lost after two main gear box securing bolts had sheared. It was noted that ambiguity had contributed to crew misdiagnosis the cause and that the ditching had been mishandled. Sea States beyond the capability of Emergency Flotation Systems and the limited usefulness of personal Supplemental Breathing Systems in cold water were identified as Safety Issues.)
  • B743, vicinity Tehran Mehrabad Iran, 2015 (On 15 October 2015 a Boeing 747-300 experienced significant vibration from one of the engines almost immediately after take-off from Tehran Mehrabad. After the climb out was continued without reducing the affected engine thrust an uncontained failure followed 3 minutes later. The ejected debris caused the almost simultaneous failure of the No 4 engine, loss of multiple hydraulic systems and all the fuel from one wing tank. The Investigation attributed the vibration to the Operator's continued use of the engine without relevant Airworthiness Directive action and the subsequent failure to continued operation of the engine after its onset.)
  • AN26, vicinity Cox’s Bazar Bangladesh, 2016 (On 29 March 2016, an Antonov AN-26B which had just taken off from Cox’s Bazar reported failure of the left engine and requested an immediate return. After twice attempting to position for a landing, first in the reciprocal runway direction then in the takeoff direction with both attempts being discontinued, control was subsequently lost during further manoeuvring and the aircraft crashed. The Investigation found that the engine malfunction occurred before the aircraft became airborne so that the takeoff could have been rejected and also that loss of control was attributable to insufficient airspeed during a low height left turn.)
  • A320, vicinity Perth Australia, 2015 (On 12 September 2015, an Airbus A320 autopilot and autothrust dropped out as it climbed out of Perth and multiple ECAM system messages were presented with intermittent differences in displayed airspeeds. During the subsequent turn back in Alternate Law, a stall warning was disregarded with no actual consequence. The Investigation attributed the problems to intermittently blocked pitot tubes but could not establish how this had occurred. It was also found that the priority for ECAM message display during the flight had been inappropriate and that the key procedure contained misleading information. These ECAM issues were subsequently addressed by the aircraft manufacturer.)
  • MD81, vicinity Stockholm Arlanda Sweden, 1991 (On 27 December 1991, an MD-81 took off after airframe ground de/anti icing treatment but soon afterwards both engines began surging and both then failed. A successful crash landing with no fatalities was achieved four minutes after take off after the aircraft emerged from cloud approximately 900 feet above terrain. There was no post-crash fire. The Investigation found that undetected clear ice on the upper wing surfaces had been ingested into both engines during rotation and initiated engine surging. Without awareness of the aircraft's automated thrust increase system, the pilot response did not control the surging and both engines failed.)
  • DC93, en-route, north west of Miami USA, 1996 (On 11 May 1996, a DC9-30 crew were unable to keep control of their aircraft after a hold fire started in live chemical oxygen generators which had been loaded contrary to applicable regulations. The Investigation concluded that, whilst the root cause was poor practices at the maintenance contractor which handed over oxygen generators for loading in an unsafe condition, the context for this was a failure of the air carrier to effectively oversee the shipper and of the FAA to oversee the air carrier. Failure of the FAA to require fire suppression in Class 'D' cargo holds was also cited.)

Load more

Related Articles

Further Reading