If you wish to contribute or participate in the discussions about articles you are invited to join SKYbrary as a registered user

 Actions

Aircraft Pressurisation Systems

From SKYbrary Wiki

Article Information
Category: Flight Technical Flight Technical
Content source: SKYbrary About SKYbrary
Content control: SKYbrary About SKYbrary

Definition

A system which ensures the comfort and safety of crew and passengers by controlling the cabin pressure and the exchange of air from the inside of the aircraft to the outside.

Discussion

Aircraft engines become more efficient with increase in altitude, burning less fuel for a given airspeed. In addition, by flying above weather and associated turbulence, the flight is smoother and the aircraft less fatigued. Crews will therefore normally fly as close to the aircraft’s Cruise Ceiling as they can depending on flight rules and any other constraints such as the aircraft oxygen system. In order to be able to fly at high attitudes, the aircraft needs to be pressurised so that the crew and passengers can breathe without the need for supplemental oxygen.

The cabin and cargo holds (or baggage compartments) on most aircraft are contained within a sealed unit which is capable of containing air under pressure higher than the Ambient Pressure outside of the aircraft. Bleed Air from the turbine engines is used to pressurise the cabin and air is released from the cabin by an Outflow Valve. By using a cabin pressure regulator, to manage the flow of air through the outflow valve, the pressure within the aircraft can be increased or decreased as required, either to maintain a set Differential Pressure or a set Cabin Altitude.

In practice, as an aircraft climbs, for the comfort of the passengers, the pressurisation system will gradually increase the cabin altitude and the differential pressure at the same time. If the aircraft continues to climb once the maximum differential pressure is reached, the differential pressure will be maintained while the cabin altitude climbs. The maximum cruise altitude will be limited by the need to keep the cabin altitude at or below 8,000 ft.

A safety valve:

  • acts as a relief valve, releasing air from the cabin to prevent the cabin pressure from exceeding the maximum differential pressure,
  • acts a vacuum relief valve, allowing air into the cabin when the ambient pressure exceeds the cabin pressure, and
  • acts as a dump valve, allowing the crew to dump cabin air manually.

A Cabin Altimeter, Differential Pressure Gauge, and Cabin Rate of Climb gauge help the crew to monitor the aircraft pressurisation.

Related Articles

Accident & Incidents

Events held on the SKYbrary A&I database which include reference to the air conditioning system include:

  • B738, en-route, near Lugano Switzerland, 2012 (On 4 April 2012, the cabin pressurisation controller (CPC) on a Boeing 737-800 failed during the climb passing FL305 and automatic transfer to the alternate CPC was followed by a loss of cabin pressure control and rapid depressurisation because it had been inadvertently installed with the shipping plug fitted. An emergency descent and diversion followed. The subsequent Investigation attributed the failure to remove the shipping plug to procedural human error and the poor visibility of the installed plug. It was also found that "the pressurisation system ground test after CPC installation was not suitable to detect the error".)
  • H25B / AS29, en-route / manoeuvring, near Smith NV USA, 2006 (On 28 August 2006, a Hawker 800 collided with a glider at 16,000 feet in Class 'E' airspace. The glider became uncontrollable and its pilot evacuated by parachute. The Hawker was structurally damaged and one engine stopped but it was recovered to a nearby airport. The Investigation noted that the collision had occurred in an area well known for glider activity in which transport aircraft frequently avoided glider collisions using ATC traffic information or by following TCAS RAs. The glider was being flown by a visitor to the area with its transponder intentionally switched off to conserve battery power.)
  • A320, en-route, north of Öland Sweden, 2011 (On 5 March 2011, a Finnair Airbus A320 was westbound in the cruise in southern Swedish airspace after despatch with Engine 1 bleed air system inoperative when the Engine 2 bleed air system failed and an emergency descent was necessary. The Investigation found that the Engine 2 system had shut down due to overheating and that access to proactive and reactive procedures related to operations with only a single bleed air system available were deficient. The crew failure to make use of APU air to help sustain cabin pressurisation during flight completion was noted.)
  • B738, en-route, near Sydney Australia 2018 (On 12 July 2018, a Boeing 737-800 was climbing through FL135 soon after takeoff from Sydney with First Officer line training in progress when the cabin altitude warning horn sounded because both air conditioning packs had not been switched on. The Captain took control and descended the aircraft to FL100 until the situation had been normalised and the intended flight was completed. The Investigation noted that although both pilots were experienced in command on other aircraft types, both had limited time on the 737 and concluded that incorrect system configuration was a consequence of procedures and checklists not being managed appropriately.)
  • B735, en-route, SE of Kushimoto Wakayama Japan, 2006 (On 5 July 2006, during daytime, a Boeing 737-500, operated by Air Nippon Co., Ltd. took off from Fukuoka Airport as All Nippon Airways scheduled flight 2142. At about 08:10, while flying at 37,000 ft approximately 60 nm southeast of Kushimoto VORTAC, a cabin depressurization warning was displayed and the oxygen masks in the cabin were automatically deployed. The aircraft made an emergency descent and, at 09:09, landed on Chubu International Airport.)

... further results