If you wish to contribute or participate in the discussions about articles you are invited to join SKYbrary as a registered user

 Actions

Taxiway Collisions

From SKYbrary Wiki

Article Information
Category: Ground Operations Ground Operations
Content source: SKYbrary About SKYbrary
Content control: SKYbrary About SKYbrary

Description

An airport is a complex interface between the air and the ground environments, where access must be controlled and separation between aircraft or between aircraft and vehicular traffic must be maintained and optimised. While most occurrences on airport aprons and taxiways do not have consequences in terms of loss of life, they are often associated with aircraft damage, delays to passengers and avoidable financial costs.

This article examines collisions and near collisions whilst aircraft are on the airport manoeuvring areas inclusive of taxiways and ramp areas. The article On-Gate Collisions provides insight into aircraft collisions occurring whilst on, entering or leaving an assigned gate.

Occurrences

As previously stated, to ensure efficient and safe airport ground operations, separation between aircraft or between aircraft and vehicular traffic must be maintained and optimised. On occasion, however, minimum separation, particularly aircraft/vehicle separation is compromised. Whilst all events do not result in collision with an aircraft, the majority of taxiway occurrences involve vehicle operators deviating from a surface movement controller clearance. These "failure to comply" occurrences most usually involve vehicles:

  • using an incorrect taxiway
  • failing to stop at a taxiway holding point
  • failing to stay on the surface movement control radio frequency or ground frequency as appropriate
  • failing to obtain a clearance before entering an area subject to control.

In all cases, these actions have the potential to put the vehicle in conflict with an aircraft which, in turn, could:

  • lead to collision
  • require aggressive braking by the aircraft which could result in personnel injuries. Cabin crew are especially vulnerable as they might be moving within the cabin preforming pre-departure or post-landing duties


Most of the remaining occurrences are related to one of the following:

  • aircraft-aircraft collisions or near collisions - collisions can result from:
    • failure to follow taxiway centreline guidance
    • failure to stop prior to a stopbar
    • taxiing at speeds unsuited to the conditions or level of congestion
    • taxiway deviation whilst trying to manoeuvre to "squeeze" past another aircraft. Manoeuvring around an aircraft partially blocking a taxiway (as might be the case if the aircraft was approaching, but not yet at the stop point of, a gate) can lead to collision. If misjudged, this could result in a wingtip striking the tail of the stopped aircraft or it could compromise clearance between obstacles or other aircraft and the wingtip opposite the stopped aircraft
    • taxiway configuration - converging taxiways can potentially lead to reduced or compromised clearance, especially where they cross
  • reduced aircraft clearance with ground equipment or obstacles. Reduced clearance accidents or incidents can occur in various ways. These include:
    • inappropriate use of a restricted taxiway - some taxiways are restricted by wingspan. Use by a larger aircraft could compromise obstacle clearance
    • failure to follow taxi lane guidance - deviation from the lane guidance whilst manoeuvring in proximity to light stands, gates or stationary equipment can result in collision
  • jet blast -inappropriate thrust settings or following too closely can result in aircraft damage due to jet blast. Jet blast can also cause unsecured equipment such as Unit Load Devices (ULD) to move and strike other aircraft, equipment or personnel

Prevention

Most taxiway accidents and incidents are preventable. This prevention is dependant upon appropriate training and testing, compliance with clearances, published procedures and right-of-way rules, maintaining situational awareness and adapting speed of movement to suit the weather and surface conditions. Some specific accident prevention strategies are as follows:

  • Vehicle operators - It is imperative that vehicle operators be properly trained, tested and authorised for ramp and taxiway operations. Driving infractions should be investigated and additional training provided where appropriate. Multiple infractions should be considered grounds for suspension of airside driving privileges. Operators should:
    • ensure daily inspection for their vehicle is complete and that beacon/hazard lights are operating when the vehicle is airside
    • maintain situational awareness
    • operate their vehicle safely and in accordance with all company and airport rules
    • obey all "rules of the road" inclusive of speed limits, stop signs and right-of-way guidance
    • yield to aircraft at all times
    • obtain and read back any ground movement controller clearance prior to entering an area where clearance is required. If clearance is not understood, ASK!
  • Tug operators - Tug operators have the additional responsibility of moving aircraft on and off gates as well as positioning aircraft from one location on the airfield to another. In addition to the aforementioned items for vehicle operators, the tug operator must:
    • know the size of the aircraft in tow inclusive of the wingspan
    • be conversant with the normal taxi routes from one airfield location to another
    • understand the stopping distances required for a tug with an aircraft in tow
    • comply with all clearances, especially runway crossing clearances
    • use wing and tail walkers when manoeuvring in congested areas
  • Controllers - The ground controller is responsible for the safe and efficient movement of aircraft and vehicle traffic on the taxiways and aprons. They should:
    • provide the appropriate clearance for the requested action
    • ensure that the clearance readback is accurate
    • to the extent possible, monitor the movement visually, via transponder or by use of multilateration equipment to ensure clearance compliance
  • Pilots - In general, pilots are responsible for the ground movement of an aircraft from the runway to the gate and from the gate to the runway although they may also reposition aircraft from one point on the airfield to another. In all cases they should:
    • request, readback and comply with an appropriate clearance
    • maintain situational awareness
    • taxi at a speed appropriate to the conditions and traffic situation
    • maintain the centre of the taxi lane
    • be vigilant for taxi lane compromise by another aircraft, vehicle or object
    • not assume that vehicles will yield right-of-way

Accidents and Incidents

The following accidents and incidents involve collision or near collision between two aircraft, an aircraft and a vehicle, or an aircraft and a stationary object.

Aircraft/Aircraft Conflict

  • B744 / A321, London Heathrow UK, 2004 (On 23 March 2004, an out of service British Airways Boeing 747-400, under tow passed behind a stationary Airbus A321-200 being operated by Irish Airline Aer Lingus on a departing scheduled passenger service in good daylight visibility and the wing tip of the 747 impacted and seriously damaged the rudder of the A321. The aircraft under tow was cleared for the towing movement and the A321 was holding position in accordance with clearance. The towing team were not aware of the collision and initially, there was some doubt in the A321 flight deck about the cause of a ‘shudder’ felt when the impact occurred but the cabin crew of the A321 had felt the impact shudder and upon noticing the nose of the 747 appearing concluded that it had struck their aircraft. Then the First Officer saw the damaged wing tip of the 747 and informed ATC about the possible impact. Later another aircraft, positioned behind the A321, confirmed the rudder damage. At the time of the collision, the two aircraft involved were on different ATC frequencies.)
  • A343 / B744, London Heathrow UK, 2007 (On 15 October 2007, an Airbus 340-300 being operated on a scheduled passenger flight by Air Lanka with a heavy crew in the flight deck was taxiing towards the departure runway at London Heathrow at night in normal visibility when the right wing tip hit and sheared off the left hand winglet of a stationary British Airways Boeing 747-400 which was in a queue on an adjacent taxiway. The Airbus 340 sustained only minor damage to the right winglet and navigation light.)
  • DH8C / GALX, Valencia Spain, 2008 (On 11 February 2008, the crew of a DHC8-300 misjudged the sufficient clearance during taxi and collided with a Gulfstream G200 at a taxiway intersection.)
  • A319 / UNKN, Stockholm Arlanda Sweden, 2011 (On 5 February 2011, an Airbus A319-100 being operated by Air Berlin on a passenger flight departing Stockholm inadvertently proceeded beyond the given clearance limit for runway 19R and although it subsequently stopped before runway entry had occurred, it was by then closer to high speed departing traffic than it should have been. There was no abrupt stop and none of the 103 occupants were injured.)
  • CRJ7 / CRJ2, Charlotte NC USA, 2008 (On 28 June 2008, a Bombardier CRJ 700 operated by PSA Airlines, during daytime pushback collided with a stationary CRJ 200 of the same company at Douglas International Airport Charlotte, North Carolina.)
  • RJ85 / RJ1H, London City Airport, London UK, 2008 (On 21 April 2008, an Avro RJ85 aircraft was parked on Stand 10 at London City Airport, with an Avro RJ100 parked to its left, on the adjacent Stand 11. After being repositioned by a tug, the RJ85 taxied forward and to the right, its tail contacting the tail of the RJ100 and causing minor damage to the RJ100’s right elevator.)
  • B738 / B738, Dublin Ireland, 2014 (On 7 October 2014, a locally-based Boeing 737-800 taxiing for departure from runway 34 at Dublin as cleared in normal night visibility collided with another 737-800 stationary in a queue awaiting departure from runway 28. Whilst accepting that pilots have sole responsible for collision avoidance, the Investigation found that relevant restrictions on taxi clearances were being routinely ignored by ATC. It also noted that visual judgement of wingtip clearance beyond 10 metres was problematic and that a subsequent very similar event at Dublin involving two 737-800s of the same Operator was the subject of a separate investigation.)
  • FA7X, London City UK, 2016 (On 24 November 2016, a Dassault Falcon 7X being marshalled into an unmarked parking position after arriving at London City Airport was inadvertently directed into a collision with another crewed but stationary aircraft which sustained significant damage. The Investigation found that the apron involved had been congested and that the aircraft was being marshalled in accordance with airport procedures with wing walker assistance but a sharp corrective turn which created a 'wing growth' effect created a collision risk that was signalled at the last minute and incorrectly so by the wing walker involved and was also not seen by the marshaller.)

Aircraft/Vehicle Conflict

  • B744, Paris CDG France, 2003 (On 18 January 2003, a Boeing 747-400F being operated by Singapore Airlines Cargo on a scheduled cargo flight from Paris CDG to Dubai taxied for departure in darkness and fog with visibility less than 100 metres in places and the right wing was in collision with a stationary and unoccupied ground de/anti icing vehicle without the awareness of either the flight crew or anybody else at the time. Significant damage occurred to the de icing vehicle and the aircraft was slightly damaged. The vehicle damage was not discovered until almost two hours later and the aircraft involved was not identified until it arrived in Dubai where the damage was observed and the authorities at Paris CDG advised.)
  • A320, London Heathrow UK, 2006 (On 26 June 2006, after an uneventful pre-flight pushback of a British Airways Airbus A320-200 at London Heathrow Airport, the aircraft started moving under its own power and, shortly afterwards, collided with the tractor that had just performed the pushback, damaging both the right engine and the tractor.)
  • FA50 / Vehicle, Moscow Vnukovo Russia, 2014 (On 20 October 2014 a Dassault Falcon 50 taking off at night from Moscow Vnukovo collided with a snow plough which had entered the same runway without clearance shortly after rotation. Control was lost and all occupants died when it was destroyed by impact forces and post crash fire. The uninjured snow plough driver was subsequently discovered to be under the influence of alcohol. The Investigation found that the A-SMGCS effective for over a year prior to the collision had not been properly configured nor had controllers been adequately trained on its use, especially its conflict alerting functions.)
  • B763, Luton UK, 2005 (On 16 February 2005, at Luton Airport, a Boeing B767-300 collided with the tug pulling it forward when the shear pin of the unserviceable tow bar being used to pull the aircraft broke. The aircraft ran onto the tug when the ground crew stopped the tug suddenly. As result of the collision with the tug the aircraft fuselage and landing gear was damaged.)
  • SB20, Stockholm Arlanda, 2001 (On 18 December 2001, a Saab 2000 being operated by Air Botnia on scheduled passenger flight from Stockholm to Oulu was taxiing out at night in normal visibility in accordance with its ATC clearance when a car appeared from the left on a roadway and drove at speed on a collision course with the aircraft. In order to avoid a collision, the aircraft had to brake sharply and the aircraft commander saw the car pass under the nose of the aircraft and judged the vehicle’s closest distance to the aircraft to be four to five metres. The car did not stop, could not subsequently be identified and no report was made by the driver or other witnesses. The diagram below taken from the official report shows the site of the conflict - the aircraft was emerging from Ramp ‘G’ to turn left on taxiway ‘Z’ and the broken line shows the roadway which is crossed just before the left turn is commenced.)
  • A320, Dublin Ireland, 2017 (On 27 September 2017, an Airbus A320 being manoeuvred off the departure gate at Dublin by tug was being pulled forward when the tow bar shear pin broke and the tug driver lost control. The tug then collided with the right engine causing significant damage. The tug driver and assisting ground crew were not injured. The Investigation concluded that although the shear pin failure was not attributable to any particular cause, the relative severity of the outcome was probably increased by the wet surface, a forward slope on the ramp and fact that an engine start was in progress.)
  • Vehicle / E190 / E121, Jersey Channel Islands, 2010 (On 1 June 2010, an Airport RFFS bird scaring vehicle entered the active runway at Jersey in LVP without clearance and remained there for approximately three minutes until ATC became aware. The subsequent Investigation found that the incursion had fortuitously occurred just after an ERJ 190 had landed and had been terminated just as another aircraft had commenced a go around after failure to acquire the prescribed visual reference required to continue to a landing. The context for the failure of the vehicle driver to follow existing procedures was found to be their inadequacy and appropriate changes were implemented.)
  • Vehicle / PA31, Mackay SE Australia, 2008 (On 29 June 2012, a Piper PA31 taking off from runway 05 on a passenger charter flight just missed hitting an inspection vehicle which had entered the take off runway from an intersecting one contrary to ATC clearance. The overflying aircraft was estimated to have cleared the vehicle by approximately 20 feet and the pilot was unaware it had entered the active runway. The driver had been taking a mobile telephone call at the time and attributed the incursion to distraction. The breached clearance had been given and correctly read back approximately two minutes prior to the conflict occurring.)

Aircraft/Object Conflict

  • B74S, Stockholm Arlanda Sweden, 1996 (On 14 June 1996, a Boeing 747SP being operated by Air China on a scheduled passenger flight from Beijing to Stockholm was arriving on the designated parking gate at destination in normal daylight visibility when it collided with the airbridge. None of the 130 occupants of the aircraft suffered any injury but the aircraft was “substantially damaged” and the airbridge was “damaged”.)
  • A321, Daegu South Korea, 2006 (On 21 February 2006, an Airbus A321-200 being operated by China Eastern on a scheduled passenger flight from Daegu to Shanghai Pudong failed to follow the marked taxiway centreline when taxiing for departure in normal daylight visibility and a wing tip impacted an adjacent building causing minor damage to both building and aircraft. None of the 166 occupants were injured.)
  • B738, Barcelona Spain, 2015 (On 12 December 2015, whilst a Boeing 737-800 was beginning disembarkation of passengers via an air bridge which had just been attached on arrival at Barcelona, the bridge malfunctioned, raising the aircraft nose gear approximately 2 metres off the ground. The door attached to the bridge then failed and the aircraft dropped abruptly. Prompt cabin crew intervention prevented all but two minor injuries. The Investigation found that the occurrence had been made possible by the failure to recognise new functional risks created by a programme of partial renovation being carried out on the air bridges at the Terminal involved.)
  • B773, Lisbon Portugal, 2016 (On 13 January 2016 ice was found on the upper and lower wing surfaces of a Boeing 777-300ER about to depart in the late morning from Lisbon in CAVOK conditions and 10°C. As Lisbon had no de-ice facilities, it was towed to a location where the sun would melt the ice more quickly but during poorly-planned manoeuvring, one of the wingtips was damaged by contact with an obstruction. The Investigation attributed the ice which led to the problematic re-positioning to the operator’s policy of tankering most of the return fuel on the overnight inbound flight where it had become cold-soaked.)
  • A346, Toulouse France, 2007 (During ground running of engines, the aircraft impacted a concrete wall at a ground speed of 30 kts following unintended movement and the aircraft was wrecked.)
  • B772, Singapore, 2013 (On 19 December 2013, the left engine of a Boeing 777-200 taxiing onto its assigned parking gate after arrival at Singapore ingested an empty cargo container resulting in damage to the engine which was serious enough to require its subsequent removal and replacement. The Investigation found that the aircraft docking guidance system had been in use despite the presence of the ingested container and other obstructions within the clearly marked 'equipment restraint area' of the gate involved. The corresponding ground handling procedures were found to be deficient as were those for ensuring general ramp awareness of a 'live' gate.)
  • A342, Perth Australia, 2005 (On 24 April 2005, an Airbus A340-200 landed short of the temporarily displaced runway threshold at Perth in good daylight visibility despite their prior awareness that there was such a displacement. The Investigation concluded that the crew had failed to correctly identify the applicable threshold markings because the markings provided were insufficiently clear to them and probably also because of the inappropriately low intensity setting of the temporary PAPI. No other Serious Incidents were reported during the same period of runway works.)
  • B734, Aberdeen UK, 2005 (Significant damage was caused to the tailplane and elevator of a Boeing 737-400 after the pavement beneath them broke up when take off thrust was applied for a standing start from the full length of the runway at Aberdeen. Although in this case neither outcome applied, the Investigation noted that control difficulties consequent upon such damage could lead to an overrun following a high speed rejected takeoff or to compromised flight path control airborne. Safety Recommendations on appropriate regulatory guidance for marking and construction of blast pads and on aircraft performance, rolling take offs and lead-on line marking were made.)

Related Articles

Further Reading